Algebra 2 Test 2022 (Radicals Part 2) - PRACTICE TEST #2

Name: John Sidanycz

#1 Points possible: 1. Total attempts: 0

Combine the following expressions.

$$3\sqrt{2} + 6\sqrt{2} = \boxed{9\sqrt{3}}$$

#2 Points possible: 1. Total attempts: 0

Combine the following expressions.

$$5\sqrt[3]{4} + 8\sqrt[3]{4} = 13\sqrt[3]{4}$$

#3 Points possible: 1. Total attempts: 0

Combine the following expressions.

$$7y\sqrt{3} - 8y\sqrt{3} + 8y\sqrt{3} = \boxed{7y\sqrt{3}}$$

#4 Points possible: 3. Total attempts: 0

Combine the following expressions.

$$4\sqrt{12} - 6\sqrt{108} + 2\sqrt{108} = -16\sqrt{3}$$

#5 Points possible: 3. Total attempts: 0

Combine the following expressions. (Assume any variables under an even root are nonnegative.)

$$3\sqrt[3]{a^5b^6} + 5a\sqrt[3]{a^2b^6} = 8ab^2\sqrt[3]{a^1}$$

$$3b^{2}\sqrt{a^{3}\sqrt{a^{2}}} + 5ab^{2}\sqrt{a^{2}}$$

 $3ab^{2}\sqrt{a^{2}} + 5ab^{2}\sqrt{a^{2}}$

#6 Points possible: 3. Total attempts: 0

Combine the following expressions. (Assume any variables under an even root are nonnegative.)
$$4x\sqrt{24xy^8} - 2y^4\sqrt{24x^3} = 4xy^4\sqrt{6x}$$

$$8xy^4\sqrt{6x} - 4xy^4\sqrt{6x}$$

#7 Points possible: 2. Total attempts: 0

Combine the following expressions.

$$7\sqrt[3]{16} - 5\sqrt[3]{16} = 2\sqrt[3]{16} = 2\sqrt[3]{8}\sqrt[3]{2} = 4\sqrt[3]{2}$$

#8 Points possible: 2. Total attempts: 0

Multiply:
$$\sqrt{98} = \sqrt{49} / \sqrt{1} = 7 / \sqrt{2}$$

 $\sqrt{14} \cdot \sqrt{7} = \sqrt{1} / \sqrt{14} = 7 / \sqrt{2}$

#9 Points possible: 2. Total attempts: 0

Multiply:

$$(4\sqrt[3]{7})(5\sqrt[3]{49}) = 20\sqrt[3]{343} = 20(7) = 140$$

#10 Points possible: 2. Total attempts: 0

Multiply:

$$\sqrt{2}(\sqrt{5}+4\sqrt{2}) = \sqrt{10} + 4\sqrt{4} = \sqrt{10} + 8$$

#11 Points possible: 3. Total attempts: 0

Multiply:

$$(\sqrt{5} + \sqrt{3})(2\sqrt{5} - 3\sqrt{3}) = 2\sqrt{25} - 3\sqrt{15} + 2\sqrt{15} - 3\sqrt{9} = 10 - \sqrt{15} - 9 = 1 - \sqrt{15}$$

#12 Points possible: 3. Total attempts: 0

Multiply (Assume all expressions appearing under a square root symbol represent nonnegative numbers):

$$(\sqrt{x}+3)(\sqrt{x}+2) = \underline{x+2\sqrt{x}+3\sqrt{x}+6} = x+5\sqrt{x}+6$$

#13 Points possible: 3. Total attempts: 0

Multiply:

$$(\sqrt{5}-3)^2 = (\sqrt{5}-3)(\sqrt{5}-3) = \sqrt{25}-3\sqrt{5}-3\sqrt{5}+9 = 5-6\sqrt{5}+9 = 14-6\sqrt{5}$$

#14 Points possible: 3. Total attempts: 0

Multiply (Assume all expressions appearing under a square root symbol represent nonnegative numbers):

$$(\sqrt{x} + \sqrt{2})(\sqrt{x} - \sqrt{2}) = \sqrt{x^2} - \sqrt{2}x + \sqrt{2}x - \sqrt{4} = x - 2$$

#15 Points possible: 3. Total attempts: 0

Rationalize the denominator in the following:

$$\frac{\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)} = \frac{\sqrt{6-2\sqrt{2}}}{-1}$$

#16 Points possible: 3. Total attempts: 0

Rationalize the denominator in the following:

$$\frac{\sqrt{7}+1}{\sqrt{7}-1} = \frac{8+1\sqrt{7}/6}{6}$$

$$(\sqrt{7}+1)(\sqrt{7}+1) = \sqrt{49}+\sqrt{7}+\sqrt{7}+1 = 8+2\sqrt{7}$$

 $(\sqrt{7}-1)(\sqrt{7}+1) = \sqrt{49}+\sqrt{7}+\sqrt{7}+1 = 6$

#17 Points possible: 3. Total attempts: 0

Solve for
$$x$$
 in $\sqrt{3x+1}+2=6$.

$$x = 5$$

$$3x+1 = 16$$

$$\frac{3x+1=16}{3x=15}$$

#18 Points possible: 3. Total attempts: 0

Solve for
$$x$$
 in $\sqrt[4]{2x+6} = 2$.

$$x = 5$$

$$2x+6=24$$

$$2x+6=16$$

 $2x=10$

#19 Points possible: 4. Total attempts: 0

Solve for
$$y$$
 in $\sqrt{y+3} = y+3$.

$$y = \underline{-3}, \underline{-1}$$

$$\sqrt{y+3} = y+3$$
 $\Rightarrow y^2+5y+6=0$
 $y+3 = (y+3)(y+3)$ $(y+3)(y+2)=0$
 $y+3 = y^2+6y+9$ $y=-3$ $y=-2$

$$y^{2}+5y+6=0$$

$$(y+3)(y+2)=0$$

$$y=-3y=-2$$

#20 Points possible: 5. Total attempts: 0

The following equation will require that you square both sides twice before all the radicals are eliminated. Solve the equation using the methods shown in the examples in the book.

$$\sqrt{x-2} = \sqrt{x+6} - 2$$

$$x = 3$$

$$x-1 = (\sqrt{x+6} - 1)(\sqrt{x+6} - 2)$$

$$x-1 = x+6 - 2\sqrt{x+6} - 2\sqrt{x+6} + 4$$

$$-2 = 10 - 4\sqrt{x+6}$$

$$-12 = -4\sqrt{x+6}$$

$$-4 = -4$$

$$3 = \sqrt{x+6}$$

$$9 = x+6$$

$$3 = x$$